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We found that we have used a wrong value for one coefficient in equations in our program for numerical calculations with
the regularized parameter �=0, therefore, some differences have been caused in part of the results, especially for the Atwood
number 1.0 in Figs. 8–12 in Sec. IV �RM instability� and Figs. 15–18 in Sec. V B �RT instability�. In the original calculations
for �=0, the absolute values of velocities of bubbles and spikes at time t=0 are not equal to one, the expected value from the
theoretical result.

We corrected those figures in this erratum. Most of the figures are seemingly unchanged, however, we show in this erratum
all figures �Figs. 8–12 and Figs. 15–18� calculated with corrected parameters. The figures where the differences clearly appear
are Figs. 10�b�, 11�b�, 12, 16�d�, and 17�b� in the original paper, which are related with the calculations for A=1.0. The
conclusion for these calculations is also unchanged, however, we have rewritten the relevant part to corrected figures in Sec.
VI �Discussions and conclusion�.

The numerical parameters adopted in the calculations are as follows. The time steps are set to �t=1.0�10−4 ��t=2.0
�10−6 in the original paper� for Figs. 8–12 and �t=5.0�10−4 for Figs. 15–18 ��t=1.0�10−4 in the original paper�,
respectively. The number of grid points N and the artificial parameter � are set to N=1024 and �=−A, A, the Atwood number,
for all calculations �same as those in the original paper�. The section and figure numbers in this erratum correspond to those
in the original paper.

IV. SINGULARITY FORMATIONS IN RICHTMYER-MESHKOV INSTABILITY

The following three paragraphs replace the first three paragraphs on p. 10 of the original paper.

Figure 8 shows amplitudes of the Fourier coefficients �Ĉm�t�� versus mode number, where dashed lines in the figure have
slope −5/2, i.e., the value predicted by Moore for the KH instability. The spectra approach to −5/2 lines as time t approaches

FIG. 8. Log-log plots of the Fourier coefficients for �a� A=0.155 at time t=0.68, 0.74, 0.80, 0.86, 0.89, 0.92, �b� A=0.5 at t=0.70, 0.79,
0.85, 0.90, 0.93, 0.96 and �c� A=1.0 at t=0.36, 0.42, 0.48, 0.54, 0.60, 0.65, 0.80. The slope of the dashed line is −5/2, the value obtained
by Moore for the KH instability.
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FIG. 9. Interfacial profiles and the curvatures for A=0.155 at t=0.80 ��a� and �b�� and t=0.92 ��c� and �d��.

FIG. 10. Interfacial profile and the curvature for A=1.0 at
t=0.65.

FIG. 11. Sheet strength � in the RM instability at �=0 for
A= �a� 0.155 and �b� 1.0, where the dashed, dashed-dotted, and
solid lines depict t=0.68, t=0.80, and t=0.92 in �a�, while they
depict t=0.48, t=0.65, and t=0.80 in �b�, respectively.

ERRATA PHYSICAL REVIEW E 74, 049902�E� �2006�

049902-2



the critical time tc, although the interval which the Fourier spectrum at t= tc fits the −5/2 line becomes shorter as the Atwood
number becomes higher, where tc=0.92 �tc=4.49�10−3 in the original paper�, tc=0.96 �tc=4.20�10−3 in the original paper�
and tc=0.80 �tc=3.62�10−3 in the original paper� for A=0.155, A=0.5 and A=1.0, respectively.

Interfacial profiles and curvatures for A=0.155 at t=0.80 �tc=4.40�10−3 in the original paper� and t=0.92 �tc=4.49
�10−3 in the original paper� are shown in Fig. 9. The interfacial profile at �c� t=0.92 is smooth, however, two discontinuities
in the neighborhood of �= ±1.4 appear in the curvature profile. After a few time steps of this critical time, the curvature of the
vortex sheet diverges and the computations break down. These two discontinuities gradually approach and form one peak at
�=0 for higher Atwood numbers �see Fig. 10�b��.

The explanation of the following figure is rewritten considerably.
Figure 10 shows the interfacial profile and curvature for A=1.0 at t=0.65. A sharp peak is observed at the spike �=0 in the

curvature profile 10�b�. This peak value at �=0 is almost unchanged up to the critical time tc=0.80, i.e., time at which the
Fourier coefficient fits the −5/2 line �see Fig. 8�c��, however, a violent numerical oscillation appears on both sides of the peak
as t→ tc and the amplitude of the oscillation exceeds the peak value at t=0.80. This numerical oscillation begins to appear in
the curvature profile when the Atwood number A�0.95 and t→ tc. This suggests that it is difficult to calculate higher order
derivatives in the neighborhood of t= tc numerically when the Atwood number is close to 1.0.

In Fig. 11, we show the sheet strength � for several times, where the solid lines �a� and �b� depict the critical sheet strength
��� , tc� for the Atwood numbers. We see that the sheet strength for A=0.155 forms two cusps at critical time tc=0.92. The

existence of cusps in � for A=0.155 suggests that the sheet strength for this Atwood number has the form of ������� in the
neighborhood of cusp points for some ��	1 as t→ tc, as analogous to the KH instability case. Such cusps are not so clear for
A=1.0, which suggests that the singularity formations may not occur for this Atwood number, even though the Fourier
spectrum fits the −5/2 line. Generally, as the Atwood number increases, the two cusps approach to each other and they form
a sharp discontinuity at �=0, where the curvature also has a sharp peak.

In the following paragraph, which replaces the first paragraph on p. 11 in the original paper, the explanation especially for
high Atwood numbers �0.85
A
1.0� is rewritten.

Dependence of the critical time tc on various Atwood numbers is depicted in Fig. 12. The critical time tc takes �almost
constant value� 0.92−0.96 for 0.03
A
0.83 �white circles�, however, it rapidly decreases with the decrease of the Atwood
number for A	0.03 �black circles�. The decrease is also found for 0.85
A
1.0 �black circles�, although the rate is not as
rapid as the one for A	0.03. For these two intervals A	0.03 and A�0.85, some oscillations appear in the calculations as
t→ tc. It is not clear at present that these oscillations are caused by the numerical instability or the solution itself has some
oscillation part, therefore, we mention here that there is some ambiguity in the determination of the critical time for those
�A	0.03 and A�0.85� Atwood numbers.

V. CORE STRENGTH AND SINGULARITY FORMATIONS IN RAYLEIGH-TAYLOR INSTABILITY

B. Singularity formations in Rayleigh-Taylor instability

The following four paragraphs replace the third through sixth paragraphs on p. 12 of the original paper.

In Fig. 15, we show amplitudes of the Fourier coefficients �Ĉm�t�� versus mode number m, where dashed lines in �a� and �b�
in the figure have slope −5/2. The spectra approach to the −5/2 lines as time t approaches critical time tc=6.47 �tc=0.4640 in
the original paper� for A=0.155 and tc=2.55 �tc=0.1684 in the original paper� for A=1.0. The Fourier spectra in the RT
instability also fit to Moore’s −5/2 power law for various Atwood numbers, although the interval which the Fourier spectrum
at t= tc fits the −5/2 line becomes shorter as the Atwood number becomes higher, as found in Fig. 8.

�In the following paragraph, the explanation of Fig. 16�d� is rewritten considerably.�

FIG. 12. Critical time tc in the RM instability for various Atwood numbers, where black circles �A	0.03 and A�0.85�
denote the parts in which some oscillations are involved as t→ tc.
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FIG. 15. Log-log plots of Fourier coefficients for A= �a� 0.155
and �b� 1.0, where plotted time is t=6.00, 6.15, 6.28, 6.34, 6.41, and
6.47 in �a� and 1.83, 1.98, 2.07, 2.15, 2.23, 2.30, and 2.55 in �b�,
respectively. The dashed line in the figure has slope −5/2.

FIG. 16. Interfacial profiles and curvatures at t=6.47 for A=0.155 ��a� and �b�� and at t=2.30 for A=1.0 ��c� and �d��, where �b� and �d�
are curvature profiles of the interfacial profiles �a� and �c�, respectively.

FIG. 17. Sheet strength � in the RT instability at �=0 for A= �a�
0.155 and �b� 1.0, where the solid, dashed-dotted, and dashed lines
depict t=6.00, 6.28, and 6.47 in �a�, while t=2.07, 2.30, and 2.55 in
�b�, respectively.
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Interfacial profiles and curvatures at tc=6.47 for A=0.155 and t=2.30 for A=1.0 are shown in Fig. 16. Time t=2.30 is not
the critical time for A=1.0 �see Fig. 15�b��, however, a violent numerical oscillation as found for the RM instability also
appears in the curvature profile for t�2.30. From a viewpoint of accuracy of calculations, we have chosen the curvature profile
at t=2.30.

Figure 17 shows the sheet strength � up to critical time tc, where solid lines �a� and �b� depict the critical sheet strength
��� , tc� for the Atwood number. Unlike the RM instability case �see Fig. 11�, the amplitude of the cuspidal form for the RT
instability is larger for higher Atwood numbers. This may relate to the fact that the strength of a vortex core for ��0 is larger
for higher Atwood numbers. Analogous to the RM instability case �see Fig. 11�b��, cuspidal form for A=1.0 is not as clear as
that for A=0.155.

�There is no change in Fig. 18 seemingly, however, we have rewritten the relevant paragraph with the corrected figure.�
Dependence of the critical time tc on the Atwood numbers is depicted in Fig. 18, where the dashed line and squares denote

the theoretical prediction by Baker et al. �1� and our numerical computations, respectively. When A�0, the critical time tc in
the RT instability is estimated by Baker et al. �1� as

tc =
C̃

�Ag�
1
2

, �14�

where the constant C̃ generally depends upon the initial conditions in the computation. Our numerical computations support
this theoretical result, although it is unclear whether the curvature singularity occurs or not for A�0.95 due to the numerical
oscillations stated above. Both Baker et al. �1� and Tanveer �2� predict that some singularity exists in the complex, i.e.,
unphysical plane, however, it will never reach the real axis, i.e., physical plane. It is not easy to verify this prediction for
A=1 by numerical computations as pointed out in Ref. �1�.

VI. DISCUSSIONS AND CONCLUSION

We rewrite part of discussions and conclusion for the singularity formations; this paragraph replaces the first paragraph on
p. 14 of the original paper.

The cuspidal formations in the sheet strength � when t→ tc are vague for A=1.0 for both RM and RT instabilities and the
cusp-like structures appear at spikes, not at the points which the vortex cores are expected to be formed when ��0. The
maximum values �peaks� in curvature profiles for A=1.0 are also found at spikes for both RM and RT instabilities and there
exist violent oscillations in the neighborhood of the points which the vortex cores are expected to be formed. In addition to
that, the computations for A�0.95 for both RM and RT instabilities do not break down in short time as found in the case for
lower Atwood numbers when time t exceeds the critical time tc, where we have defined it as the time at which the Fourier
spectrum fits the Moore’s -5/2 power law, the sheet strength � has cuspidal form and the curvature profile has sharp discon-
tinuities. These may suggest that the singularity formations for A=1.0 does not occur in finite time for both RM and RT
instabilities.

�1� G. Baker, R. Caflisch, and M. Siegel, J. Fluid Mech. 252, 51
�1993�.

�2� S. Tanveer, Proc. R. Soc. London, Ser. A 441, 501 �1993�.

FIG. 18. Critical time �Atc in the RT instability for various Atwood numbers, where squares denote our numerical calculations, while the
dashed line gives the theoretical prediction by Baker et al.
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